OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN 4413/MAE 4053 Automatic Control Systems Spring 2007

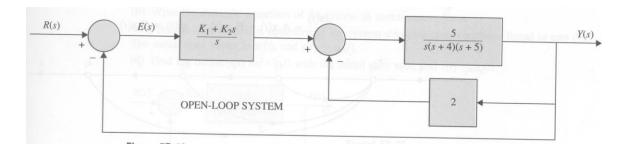
Midterm Exam #2

For all student Please specif	,	•		-	
1)	_; 2)	; ; 3)	; 4)	;	
Name : _					
E-Mail Address:					

Problem 1:

The block diagram of a feedback control system is shown below.

- a) Find the forward path transfer function Y(s)/E(s) and the closed-loop transfer function Y(s)/R(s).
- b) Express the dynamic system in the form of state space representation, $\dot{x}(t) = Ax(t) + Br(t)$, y(t) = Cx(t) + Dr(t).



Problem 2:

Given a nonlinear system described by

$$\ddot{y} - \dot{y} - e^{a+1}y = \ddot{u} + \dot{u} + 2u$$
,

linearize the system about the equilibrium point and show the linearized state space representation in $\dot{x} = Ax + Bu$, y = Cx + Du.

Problem 3:

For the matrix

The matrix
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

determine the e^{At} .

Problem 4:

Prove that a square matrix with distinct eigenvalues is nonsingular if and only if there is no zero eigenvalue.

Problem 5:

Find the solution of $\dot{x}(t) = Ax(t) + Bu(t)$, where

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

with

th
$$x(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } u(t) = 1 \text{ for all } t \ge 0.$$